N. A. Zykov, R. M. Sevast'yanov, and R. A. Chernyavskaya

Approximations are given for the additivie and nonadditive components of the third virial coefficient for the interaction potential (12-7, δ). The results are compared with experiment.
The classical third virial coefficient can be written in the form [1, 2]

$$
\begin{equation*}
C(T)=\left(b_{0}\right)^{2}\left[C_{\text {add }}^{*}\left(T^{*}, \delta\right)+v^{*} \Delta C_{\text {nonadd }}^{*}\left(T^{*}, \delta\right)\right] \tag{1}
\end{equation*}
$$

where $C_{a}^{*}{ }_{a d d}\left(T^{*}, \delta\right)$ is the additive part and $\Delta C_{n o n a d d}^{*}\left(T^{*}, \delta\right)$ is the nonadditive part (in the above units) and $\nu^{*}=\nu / \varepsilon \sigma^{9}$ is the coefficient of the nonadditive three-particle interaction potential.

It has been established [1-3] that for spherically symmetric molecules the dominant part of the nonadditive three-particle interaction potential is given by the three-dipole London term (Midzuno and Kihara potential)

$$
\begin{equation*}
\Delta \varphi_{123}=v\left[1+3 \cos \theta_{12} \cos \theta_{13} \cos \theta_{23}\right]\left(r_{12} r_{13} r_{23}\right)^{-3}, \tag{2}
\end{equation*}
$$

where $r_{i j}$ and $\theta_{i j}$ are the sides and internal angles of a triangle formed by the three interacting molecules. The factor v determines the strength of the potential, and to a good approximation one can take

$$
\begin{equation*}
v=\frac{3}{4} \alpha c_{6}, \tag{3}
\end{equation*}
$$

where α is the polarizability and c_{6} is the London dipole-diploe interaction coefficient.
For multiatomic molecules, Sherwood and Pauznitz [3] have suggested the following modification of the Midzuno and Kihara potential (2):

$$
\begin{equation*}
\Delta \varphi_{123}=-\frac{3}{4} \alpha \frac{\Sigma \varphi_{i j}^{(2)}}{\Sigma r_{i j}^{-6}}\left(1+3 \cos \theta_{12} \cos \theta_{13} \cos \theta_{23}\right)\left(r_{12} r_{13} r_{23}\right)^{-3} \tag{4}
\end{equation*}
$$

where $\varphi_{i j}^{2}$ corresponds to the attractive energy in the pairwise interaction potential for multiatomic molecules. For spherically symmetric molecules

$$
\begin{equation*}
\Sigma \varphi_{i j}^{(2)} / \Sigma r_{i j}^{6}=-c_{6} \tag{5}
\end{equation*}
$$

and (4) reduces to (2).
TABLE 1. Additive and Nonadditive Components of the Third Virial Coefficient of Argon, Nitrogen, and Methane $C, \mathrm{~cm}^{6} / \mathrm{mole}{ }^{2}$

$T, \mathrm{~K}$	Argon			Nitrogen			Methane		
	${ }^{c}$ add	$\triangle C$ nodd	C	${ }^{\text {cadd }}$	ΔC nonadd	C	$c_{\text {add }}$	$\triangle C$ nonadd	C
148, 15	1248	1032	2280	1683	1119	2802	-2396	6415	4019
173,15	1275	705	1980	1480	789	2269	$+1105$	3770	4875
198,15	1160	526	1686	1300	603	1903	1854	2534	4388
223, 15	1043	416	1459	1171	485	1656	1905	1858	3763
248,15	948	343	1291	1083	405	1488	1784	1445	3229
273,15	877	291	1168	1023	347	1370	1637	1172	2809
298,15	823	253	1076	982	304	1286	1505	981	2486
323, 15	783	223	1006	955	269	1224	1396	841	2237
348,15	753	200	953	936	243	1179	1309	735	2044
373, 15	730	181	911	924	221	1145	1240	652	1892
398,15	713	165	878	916	203	1119	1187	585	1772
423,15	701	152	853	912	186	1098	1144	531	1675

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 3, pp. 447-451, March, 1983. Original article submitted August 14, 1981.

TABLE 2. Coefficients for Approximations of $\mathrm{C}_{\text {add }}^{*}$ and C at $T *=0.45-3.0$

k	$\beta_{0}^{(3)}$	$\beta_{1}^{(3)}$	$\beta_{2}^{(3)}$	$\beta_{3}^{(3)}$
0	0,365647 (0)	0,298297 (0)	$-0.599578(-1)$	-0,335922 (-1)
1	-0,376386 (0)	$-0,630623$ (0)	0,751467 (0)	0,370504 (0)
2	0,898883 (0)	-0,110346 (I)	-0,254279 (0)	0,295476 (0)
3	-0,425433 (0)	0,105637 (1)	-0,871698 (0)	0,300194 (0)
4	0,529373 (-1)	-0,131574 (0)	0,109271 (0)	-0, $433315(-1)$
5	-0, 420436 (-2)	$0,106424(-1)$	-0,904796 (-2)	0,386160 (-2)
6	$0,136163(-3)$	-0,349088 (-3)	0,301149 (-3)	-0,133431 (-3)
k	$\beta_{0}^{(4)}$	$\beta_{1}^{(4)}$	$\beta_{2}^{(4)}$	$\beta_{3}^{(4)}$
0	0,492110 (-1)	0,580741 (-1)	-0,623777 (-1)	0,565189 (0)
1	0,138170 (1)	0,199880 (1)	0,127598 (1)	0,412141 (1)
2	0,631198 (0)	0,349808 (0)	0,419032 (0)	0,309034 (0)
3	0,132882 (0)	0,978673 (-1)	-0,114492 (0)	-0,216422 (0)
4	-0,667733 (-2)	-0,185340 (-1)	0,222499 (-1)	0,268218 (-1)
5	0,510185 (-3)	0,186735 (-2)	$-0,244518(-2)$	-0,257586 (-2)
6	-0,166480 (-4)	-0,698957 (-4)	0,939759 (-4)	0,996887 (-4)

Note. The coefficients are given in normalized form.
TABLE 3. Coefficients for Approximations of $C_{\text {add }}^{*}$ and $\Delta C_{\text {nonadd }}^{*}$ for $T^{*}=3.0-12$

k	$B_{0}^{(3)}$	$\beta_{1}^{(3)}$	$\beta_{2}^{(3)}$	$\beta_{3}^{(3)}$
0	0,175183 (0)	0,328786 (0)	-0,105061 (0)	0,486291 (0)
1	0,237031 (1)	-0,222200 (1)	0,580473 (1)	-0,138505 (2)
2	-0,180669 (2)	0,141568 (2)	-0,655627 (2)	0,155089 (3)
3	0,765338 (2)	-0,713157 (2)	0,360430 (3)	-0,812465 (3)
4	-0,184284 (3)	0,188440 (3)	-0,101161 (4)	0,222256 (4)
5	0,239059 (3)	-0,255693 (3)	0,141393 (4)	-0,306582 (4)
6	$-0,128782$ (3)	0,140752 (3)	-0,785648 (3)	0,169010 (4)
k	$\beta_{0}^{(4)}$	$\beta_{1}^{(4)}$	$\mathrm{B}_{2}^{(4)}$	$\beta_{3}^{(4)}$
0	0,118969 (-1)	0,288297 (-1)	$-0,920101(-1)$	0,209942 (0)
1	0,174649 (1)	0,203824 (1)	0,510334 (1)	-0,567849 (0)
2	-0,130056 (1)	0,249290 (1)	-0,442357 (2)	0,748744 (2)
3	0,634374 (1)	-0,170651 (2)	0,243107 (3)	-0,437643 (3)
4	-0,115139 (2)	0,53435! (2)	-0,661435 (3)	0,123128 (4)
5	0,110843 (2)	-0,737421 (2)	0,854933 (3)	-0,162239 (4)
6	-0,426344 (1)	0,372089 (2)	-0,415448 (3)	0,797435 (3)

Note: The coefficients are given in normallzed form.
TABLE 4. Comparison of Calculated values of the Third Virial Coefficients of a Helium-Nitrogen Mixture (upper row) with Experimental Data [10] (lower row), $\mathrm{C}_{\mathrm{ijk}}, \mathrm{cm}^{6} / \mathrm{mole}{ }^{2}$

$C_{i j k}$	$-133,15$	143,15	158,15	183,15	223,15	273,15
	122	120	117	114	109	104
C_{111}	182	159	156	150	109	116
	343	340	336	329	319	307
C_{112}	350	430	510	420	270	130
	724	713	701	688	674	662
C_{122}	1020	750	590	780	750	690
	C_{222}	3191	2929	2567	2105	1656
	3100	2920	2414	2132	1536	1370
					1416	

If we use the Kihara-Midzuno-Kaneko expansion [5] as in the case of the pair porential (12-7, δ) [4], then for multiatomic molecules in the first approximation we can write

$$
\begin{equation*}
\varphi_{i j}^{(2)}=-c_{6} r^{r_{i j}}\left(1+\frac{5}{2} \frac{r_{e i j}^{2}}{r_{i j}^{2}}+\ldots\right)=-c_{6}\left(r_{i j}^{2}-\frac{5}{6} r_{e i j}^{2}\right)^{-3} . \tag{6}
\end{equation*}
$$

Using the quasispherical model pair potential (12-7, δ) $[4,6]$ and the modified nonadditive three-particle Midzuno-Kihara potential given by (4) and (6), the additive and nonadditive components of the third virial coefficient were calculated numerically. The force constant of the interparticle interaction potential is given in [6], and in the calculation of v * we used a refined value of the coefficient v [7]. The temperature dependence of the components of the third virial coefficients for argon, nitrogen, and methane is given in Table 1. At temperatures exceeding the Boyle temperature, the nonadditive component of the third virial coefficient is of abour the same order as the additive component. The calculated values of the third virial coefficient agree with [8] within experimental error.

Numerical values of the components of the third virial coefficient obtained by direct integration are approximated by the formulas

$$
\begin{gather*}
C_{\mathrm{add}}^{*}\left(T^{*}, \delta\right)=\sum_{k=0}^{6} \sum_{i=0}^{3} \beta_{j}^{(3)} \delta^{i} \Delta^{k}, \tag{7}\\
\Delta C_{\text {nonadd }}^{*}\left(T^{*}, \delta\right)=\sum_{k=0}^{6} \sum_{j=0}^{3} \beta_{i}^{(4)} \delta^{j} \Delta^{k}, \tag{8}
\end{gather*}
$$

where $\Delta=\exp \left(1 / T^{*}\right)-1 ; \delta=\left(r_{e} / \sigma\right)^{2}$.
Values of the coefficients $\beta_{j}^{(3)}$ and $\beta_{j}^{(4)}$ for two temperature regions $T^{*}=0.45-3.0$ and $T^{*}=3.0-12$ are given in Table 2 and Table 3, respectively. For $\delta \leqslant 0.4$ the approximations (7) and (8) give the third virial coefficient with an error not exceeding 1% and its first and second derivatives with respect to temperature within errors of 5 and 20%, respectively. These errors are considerably smaller than those which typically result from differentiation of the smoothed experimental data.

For determination of the third virial coefficient in a gas mixture, it is necessary strictly speaking to perform a direct numerical calculation of the "mixed" third virial coefficients $C_{i j k}$. However, Rowlinson et al. [9] have shown that for the additive components of the "mixed" $C_{i j k}$ one can use in the first approximation the same function $C{ }^{*} d d$ ($T *, \delta$) but with different arguments. An extension of the approximation recommended in [9] to a multiatomic gas can be written in the form

$$
\begin{gather*}
a_{i j k}=\sqrt[3]{a_{i j} a_{i k} a_{j k}}, \tag{9}\\
\varepsilon_{i j k}=\sqrt[3]{\varepsilon_{i j} \varepsilon_{i k} \varepsilon_{j k}}, \tag{10}\\
v_{i j k}=\sqrt[3]{v_{i i i} v_{j j j} v_{k k k}}, \tag{11}\\
r_{e i j k}^{2}=\frac{1}{3}\left(r_{e i j}^{2}+r_{e j k}^{2}+r_{e i k}^{2}\right), \tag{12}
\end{gather*}
$$

and $\alpha_{i j k}=\sqrt{\sigma_{i j k}^{2}-r_{e i j k}^{2}}, T_{i j k}=k T / \varepsilon_{i j k}, \delta_{i j k}=r_{e i j k}^{2} / \sigma_{i j k}^{2}$.
As an example, Table 4 shows a comparison of the calculated values of the third virial coefficients $\mathrm{C}_{\mathrm{ijk}}$ in a helium-nitrogen mixture and the experimental data [10]. The results are consistent within experimental error.

LITERATURE CITED

1. H. N. Temperley et al. (eds.), Physics of Simple Liquids, Elsevier (1968).
2. E. Meison and T. Sperling, Virial Equation of State [Russian translation], Mir, Moscow (1972).
3. A. E. Sherwood and J. M. Prausnitz, "Third virial coefficients for the Kihara, exp-6, and square-well potentials," J. Chem. Phys., 41, No. 2, 413 (1964).
4. R. M. Sevast'yanov and N. A. Zykov, "Interaction potentials of nonpolar multiatomic molecules," Inz.-Fiz. Zh., 38, No. 4, 639 (1980).
5. T. Kihara, Y. Midzuno, and S. Kaneko, "Virial coefficients and intermolecular potential for small nonspherical molecules," J. Phys. Soc. Jpn., 11, No. 4, 362 (1956).
6. R. M. Sevast'yanov and N. A. Zykov, "Second virial coefficient of nonpolar gases and their mixtures," Inzh.-Fiz. Zh., 38, No. 4, 639 (1980).
7. A. M. Ratner, "Van der Waals interaction constants of inert atoms," Fiz. Nizk. Temp., 7, No. 3, 371 (1981).
8. J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases. A Critical Compilation, Oxford, Clarendon Press (1969).
9. J. S. Rowlinson, F. H. Sumner, and R. Sutton, "Third virial coefficient for gas mixtures," Trans. Faraday Soc., 50, 1 (1954).
10. F. B. Canfield, T. W. Leland, and R. Kobayashi, "Volumetric behavior of gas mixtures at low temperatures: the heliumrnitrogen system from 0 to $-140^{\circ} \mathrm{C}$, " Adv. Cryogenic Eng., 7, 146 (1963).

THERMAL CONDUCTIVITY OF TRANSPOSED MULTISTRAND FLAT SUPERCONDUCTOR
W. Escher

UDC 536.21

Longitudinal and transverse thermal conductivities are calculated for a rectangular superconductor consisting of transposed multistrand wires.

Coils for superconducting magnets are often wound with transposed wires, each consisting of twisted superconducting strands embedded in a metal matrix. There are available transposed conductors with the space between strands completely filled by solder metal, in another version of such conductors the strands are only coated with solder metal or an oxide layer.

Inasmuch as such coils are cooled only at certain locations, information about the longitudinal thermal conductivity $\lambda_{\|}$and the transverse thermal conductivity λ_{\perp} is needed for an understanding of the processes of heat propagation along the conductor and heat transfer to cooling helium. These thermal conductivities have been calculated on the basis of the conductor model with solder metal between individual multistrand wires (Fig. 1).

Each of the quantities λ_{\perp} and $\lambda_{\|}$consists of two components λ_{1} and λ_{2} characterizing heat conduction through wire and solder, respectively, in directions perpendicular and parallel to the wires. Both λ_{1} and λ_{2} are determined not only by the thermal conductivity of the respective materials (wire and solder) but also by the coefficients of heat transfer between them and by the geometry of the conductor structure. Furthermore, λ_{\perp} and $\lambda_{\|}$depend on the transposition angle of wires in the conductor.

Thermal Conductivity of Composite Wire. In calculation of the thermal conductivity of a composite wire, it is permissible to disregard heat conduction through the superconductor, inasmuch as the thermal conductivity of the matrix material (copper) λ_{M} is approximately three orders of magnitude higher than the thermal conductivity of the superconducting material (NbTi) λ_{C} [1]. In effect, therefore, superconductor strands only reduce the total cross section for heat removal.

An expression for the transverse thermal conductivity $\lambda_{M_{1}}$ of wire was derived on the basis of the model shown in Fig. 2. The section of a composite wire is subdivided into hexagonal structures with hexahedral superconductor strands at their centers so that the area for heat transfer decreases and the path of heat transfer becomes longer. When a characteristic element of the matrix is subdivided into four geometrical segments, A, B, C, D, then the sum of their thermal resistances will determine $\lambda_{M_{1}}$:

$$
\begin{equation*}
\lambda_{\mathrm{M} 1}=\frac{\pi}{2} A_{1} \lambda_{\mathrm{N}}, \tag{1}
\end{equation*}
$$

Dresden University, German Democratic Republic. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 44, No. 3, pp. 451-457, March, 1983. Original article submitred February 16, 1982.

